Footprinting of echinomycin and actinomycin D on DNA molecules asymmetrically substituted with inosine and/or 2,6-diaminopurine.
نویسندگان
چکیده
In order to clarify the role of the purine 2-amino group in the recognition of DNA by small molecules we have examined the binding of actinomycin D and echinomycin to artificial DNA molecules asymmetrically substituted with inosine and/or 2,6-diaminopurine (DAP) in one of the complementary strands. These DNAs, prepared by a method based upon PCR, present various potential sites for antibiotic binding, including several containing only a single purine 2-amino group in different configurations. The results show unambiguously that the presence of two 2-amino groups is mandatory for binding of actinomycin D to double-stranded DNA. In the case of echinomycin only one purine 2-amino group is required for remarkably strong binding to the asymmetric TpDAP.TpA dinucleotide step, but the CpDAP.TpI step (which also contains only a single purine-2 amino group) does not afford a binding site. Evidently, removing a 2-amino group (G-->I substitution) is dominant over adding one (A-->DAP substitution). No sequences containing just a single guanine residue are acceptable. The possibility is raised that replacing guanosine with inosine may do more than remove a group endowed with hydrogen bonding capability and interfere with ligand binding in other ways. The new methodology developed to construct asymmetrically substituted DNA substrates for this work provides a novel strategy that should be generally applicable for studying ligand-DNA interactions, beyond the specific interest in drug binding to DNA, and may help to elucidate how proteins and oligonucleotides recognize their target sites.
منابع مشابه
Role of stacking interactions in the binding sequence preferences of DNA bis-intercalators: insight from thermodynamic integration free energy simulations
The major structural determinant of the preference to bind to CpG binding sites on DNA exhibited by the natural quinoxaline bis-intercalators echinomycin and triostin A, or the quinoline echinomycin derivative, 2QN, is the 2-amino group of guanine (G). However, relocation of this group by means of introduction into the DNA molecule of the 2-aminoadenine (=2,6-diaminopurine, D) base in place of ...
متن کاملRecognition of specific sequences in DNA by a topoisomerase I inhibitor derived from the antitumor drug rebeccamycin.
We investigated the interaction with DNA of two synthetic derivatives of the antitumor antibiotic rebeccamycin: R-3, which is a potent topoisomerase I inhibitor and contains a methoxyglucose moiety appended to the indolocarbazole chromophore, and its aglycone, R-4. Spectroscopic measurements indicate that R-3 intercalates into DNA and that its carbohydrate domain contributes significantly to re...
متن کاملThe use of diaminopurine to investigate structural properties of nucleic acids and molecular recognition between ligands and DNA.
2,6-Diaminopurine (DAP) is an analogue of adenine which can be converted to nucleotides that serve as substrates for incorporation into nucleic acids by polymerases in place of (d)AMP. It pairs with thymidine (or uracil), engaging in three hydrogen bonds of the Watson-Crick type. The result of DAP incorporation is to add considerable stability to the double helix and to impart other structural ...
متن کاملSperm DNA damage in mice irradiated with various doses of X-rays alone or in combination with actinomycin D or bleomycin sulfate: an in vivo study
Background: DNA damage in male germ cells due to exposure to environmental and manmade physico-chemical genotoxic agents is considered as the main cause of male infertility. The aim of this study was to evaluate the effects of combined modalities (radiotherapy and chemotherapy) routinely used for cancer treatment on mouse sperm chromatin in vivo. Materials and Methods: Forty-eight mice were div...
متن کاملPurine analog substitution of the HIV-1 polypurine tract primer defines regions controlling initiation of plus-strand DNA synthesis
Despite extensive study, the mechanism by which retroviral reverse transciptases (RTs) specifically utilize polypurine tract (PPT) RNA for initiation of plus-strand DNA synthesis remains unclear. Three sequence motifs within or adjacent to the purine-rich elements are highly conserved, namely, a rU:dA tract region immediately 5' to the PPT, an rA:dT-rich sequence constituting the upstream porti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nucleic acids research
دوره 25 8 شماره
صفحات -
تاریخ انتشار 1997